

Sesam example: Parametric Modelling of Corrugated Plates

WHEN TRUST MATTERS

Introduction

- For corrugated bulkhead, can be modelled using parametric model.
- Refer script example. Each step will be explained in this example.

Script Example – Input

• Input : Plate Dimensions, Material & thickness

// Dimensions of corrugated plates							
Hp = $6.23 m;$	//Hp = Height of plate						
Wp = 12.32 m;	//Wp = Total width of plate						
L1 = 700 mm;	//L1 = Length of sub panel <l1><l2></l2></l1>						
L2 = 300 mm;	//L2 = Length of corrugation / $\ \$ D1						
D1 = 400 mm;	//D1 = Depth of corrugation						
<pre>PanelName = "Bulkhead_1"; //PanelName = Name of set comprising corrugated plate</pre>							
// Material and thickness							
Mild = Material(235 MPa, 7850 kg/m3, 210 GPa, 0.3, 1.2E-5, 0.03);							
$Th_{10} = Thickness(10 mm);$							
<pre>Mild.setDefault();</pre>							
Th_10.setDefault();							

Script Example – Step 1

• Step 1 – Initialization of intermediate parameters, array

<pre>var Total_Length = 0.0 m;</pre>	// Total length of the plate we have created to now						
var $i = 0;$	// Counter for sub panels						
var j = 0;	// Counter for corrugations = 4 sub panels/ \setminus						
<pre>var PartNo = 1;</pre>	// Sub panel part 1,2,3,4						
<pre>var array_Curves = new Array();</pre>	// Guide curves at the base of the plate						

Script Example – Step 2

- Step 2 Create curves for sub panels until they are beyond Wp
 - "L1", "L2", "D1", "Wp" are used.
 - Using "Do... while..." statement. Repeat this until Total_Length < Wp


```
do {
   var StartP = (L1+L2)*2*j;
                               // Start (reference) point for the next corrugation
                                // Create curve for 1st subpanel
    if ( PartNo == 1)
        array Curves[i] = CreateLineTwoPoints(Point(StartP,0,0), Point((StartP+L1),0,0));
        rename(array Curves[i], "Line "+i);
        Total Length = Total Length + L1;
        PartNo = 2;
                                // Create curve for 1st corrugation subpanel
    else if ( PartNo == 2)
        array Curves[i] = CreateLineTwoPoints(Point(StartP+L1,0,0), Point((StartP+L1+L2),D1,0));
        rename(array Curves[i], "Line "+i);
        Total Length = Total Length + L2;
        PartNo = 3;
   else if ( PartNo == 3)
                                // Create curve for 2nd subpanel
        array Curves[i] = CreateLineTwoPoints(Point(StartP+L1+L2,D1,0), Point((StartP+2*L1+L2),D1,0))
        rename(array Curves[i], "Line "+i);
        Total Length = Total Length + L1;
        PartNo = 4;
                                // Create curve for 2nd corrugation subpanel
    else if ( PartNo == 4)
        array Curves[i] = CreateLineTwoPoints(Point(StartP+2*L1+L2,D1,0),
Point(StartP+2*(L1+L2),0,0));
        rename(array Curves[i], "Line "+i);
        Total Length = Total Length + L2;
        PartNo = 1;
        j++; // New corrugation
    i++; // Next sub panel
} while (Total Length < Wp);</pre>
```

Script Example – Step 3, 4

- Step 3 Make a curve to sweep alongUsing "Divide by plane".
 - "Hp" is used.
 - "CreateLineTwoPoints" command is used

var SweepCurve1 = CreateLineTwoPoints(Point(0,0,0), Point(0,0,Hp));

- Step 4 Make plates by sweeping lines and put them in a set
 - Create plate by sweeping along guide curve

```
NewSet = Set();
i = 0;
for ( i =0; i < array_Curves.length(); i++)
{
    temp_Panel = SweepCurve(array_Curves[i], SweepCurve1);
    NewSet.add(temp_Panel);
    rename(temp_Panel, "Panel_" + i);
}
```


Script Example – Step 5, 6

- Step 5 Divide the last panel at Wp and delete the rest
 - Using "Divide by plane".
 - "Wp" is used.

7

```
Print("Final numer of curugate plate = " + (i - 1));
var Rest = GetNamedObject("Panel_"+(i-1)).divide(XPlane3d(Wp));
Delete(Rest);
```


 Step 6 – May use "Move-Rotate" to move the plate to where it belongs

Ne	ewSet.moveRotate(<i>Point</i> (, 0,	0), <i>Vec</i>	tor3d (0,	0,	1),90	,geUNC	ONNECI	CED);
Ne	<pre>ewSet.name = PanelName;</pre>						II Move		-
							Translate	Rotate	Mirror
							Point on Point	rotation ax	kis (P1):
							Rotation	axis vecto or3d(0, 0,	or: 1)
	20 APRIL 2023						Rotation	angle:	

Script Example – Step 7

• Step 7 – Generate Mesh

• "L1" is used for default mesh density (to have 2 meshes along width in one sub-panel)

```
Mesh_Default = MeshDensity(L1/2.0);
Mesh_Default.setDefault();
Analysis1 = Analysis(true);
Analysis1.add(MeshActivity());
Analysis1.add(LoadResultsActivity());
Analysis1.setActive();
Analysis1.execute();
```

